
April 1999 The Delphi Magazine 57

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Bitmap Puzzle

QThe sample images supplied
with Delphi are quite handy

as far as sample images go. How-
ever, when I look at the button
images, they are not as I would ex-
pect. They have a disgusting back-
ground colour and seem to be
made up from two pictures. How
do they work?

AThe layout you describe is
designed for TBitBtn and

TSpeedButton usage. The Glyph
property of these objects can be
given a bitmap with a few special
characteristics. We will deal with
background colour a bit later.

The bitmap given to the Glyph
property can have 1, 2, 3 or 4 indi-
vidual images within it. If there is
more than one image, they must all
be the same size in a horizontal
row. Assuming four images are
supplied, reading left to right, they
are interpreted as shown in Table
1, as per the online help.

If only one bitmap is given, the
components modify it accordingly

Image Position Button State Description

First Up This image appears when the button is
up (unselected). This image is also used
when the button has focus (for example,
if the user tabs to it); in this case, a focus
rectangle is drawn around the button.
If no other images exist in the bitmap,
bit buttons also use this image for all other
states.

Second Disabled This image usually appears dimmed to
indicate that the button can’t be selected.

Third Clicked This image appears when the button is
clicked. The Up image reappears when the
user releases the mouse button.

Fourth Down This image appears when the button stays
down (indicating that it remains selected).

to indicate the other states. For
example, if you set a TBitBtn’s
Enabled property to True, it will
grey out the image using some
standard algorithm. The fourth
image is only useful in a speed-
button, as a TBitBtn does not
remain in a depressed state.

If you supply a bitmap to one of
these Glyph properties, the code in
the component will examine the
size. For example, if the bitmap is 8
pixels high and 24 pixels wide, it
will decide that it is made of three
images and so set the NumGlyphs
property to 3. This is great, and
very convenient if there are indeed
3 square images represented in the
bitmap. However, if there are really
supposed to be 2 images, each of
which is 8 pixels high and 12 pixels
wide, NumGlyphs will be set wrong
and the image drawn on the button
will be too small. You can explicitly
set NumGlyphs to fix that.

The other aspect about the Glyph
property is that it has a transpar-
ency option. In 16-bit Windows,
there was no easy mechanism for
generating bitmaps with transpar-
ent areas. So the TBitmap type
added a minor kludge to enable

➤ Table 1

transparency support. TBitmap has
a TransparentColor property. Any
pixel in the bitmap that has this
colour will be considered a trans-
parent pixel. The main back-
ground colour of the canvas that
the bitmap is drawn on will be
drawn instead of that pixel from
the bitmap.

The value of TransparentColor
comes from the colour of the very
bottom left pixel in the bitmap. The
tasteless olive background in the
Inprise-supplied sample images is
used to accentuate the transpar-
ent areas. Since the bottom left
pixel of all these supplied bitmaps
is the same as the bad background
colour, all the bad colour will be
transparent.

As a small example, the
Inprise-supplied bitmap file
DOOROPEN.BMP looks like Figure 1.
Similarly, DOORSHUT.BMP looks
like Figure 2. We have the left
image in each case being used
when the mouse is up or down, and
the second image being used when
the relevant button is disabled.
But the image could be more
dynamic by combining the two. If
you use MS Paint, or Borland Image

➤ Figure 1

➤ Figure 2

➤ Figure 3

58 The Delphi Magazine Issue 44

Editor, you can make an image that
looks like Figure 3. Here the door is
shut when the button is up (first
image). When the user clicks the
button, the door opens (third
image). If the underlying button is
disabled, the greyed out image is
used. This is on this month’s disk
as DOORMOVE.BMP so you can
check it out by using it for the Glyph
property of a TBitBtn or
TSpeedButton.

TTable Component Editor

QI am writing a new compo-
nent inheriting from TTable

and wish to add some extra compo-
nent editors to it. Whenever I try to
do this, I lose the original TTable
component editors. How do I get
around this?

AIf you are unfamiliar with the
terminology used in the

question, then allow me to explain.
When you right click on any com-
ponent on a form designer, there
are a standard set of menu items
that appear in the popup menu, eg
Align To Grid, Send To Back. How-
ever, some components have more
entries on their popup menu.

A TMainMenu, for example, has an
extra entry Menu Designer... and a
TTable has various extra ones
depending on the Delphi version.
In Delphi 1, it just had Fields
Editor..., but Delphi 2 and 3 have
an additional Explore item (which
invokes the Database Explorer).
With a bare TTable (that is, with

no DatabaseName or TableName prop-
erties) Delphi 4 looks just the
same. However, if the TTable is set
to point at an existing database
table, Delphi 4 adds Delete Table,
Rename Table... and Update Table
Definition. If it points to a valid
database, but to a non-existent
table, you also get a Create Table
option. Use the context-sensitive
help available for these menu
items to learn more about how
they work.

All these menu items are called
verbs, and are written in Delphi
code in a component editor class.
This is done in a manner not
entirely dissimilar to writing prop-
erty editors (discussed in The
Delphi Clinic in the last issue).
More information about compo-
nent editors can be found by look-
ing up the phrase on the Collection
‘98 CD-ROM, but, in short, these are
designed to perform operations on
a component more interesting
than just modifying one property.
In many cases they will modify sev-
eral properties (such as the
TDatabase’s component editor
Database Editor...).

A simple component editor for a
TTable is shown in Listing 1 (from
TblEdit1.Pas on this month’s disk).
You install it just like installing a
component. When installed,
Delphi calls the Register routine
and learns about the component
editor’s existence. You can see
that a component editor object
inherits from the Delphi-supplied
TComponentEditor class, which is
described in the help in all Delphi
versions. TComponentEditor is

➤ Listing 1
defined in the DsgnIntf.Pas Open
Tools API source file, supplied
either in Delphi’s SOURCE\VCL or
SOURCE\TOOLSAPI directory,
depending on the Delphi version.

When the user drops a compo-
nent onto a form designer, Delphi
identifies which component editor
class is registered for it and cre-
ates an instance of that class. If no
specific editor has been installed,
Delphi uses a class called
TDefaultEditor. When the user
right clicks the component, it calls
GetVerbCount to identify how many
new verbs to add onto the context
menu, then calls GetVerb sufficient
times to get the menu item cap-
tions. If the user chooses one of
these menu items, Delphi calls the
component editor’s ExecuteVerb
method, passing in the relevant
index.

If the user double clicks the com-
ponent, the component editor’s
Editmethod is called. If no specific
component editor has been
registered, TDefaultEditor.Edit
attempts to identify the default
event and makes an event handler
for it (or jumps to that event
handler if it already exists). Many
component editors override Edit
and make it execute one of the new
verbs. Listing 1 executes the first
verb, number 0.

The problem with this
component editor, as mentioned
in the question, is that all the
normal TTable component editor
verbs from the Delphi-supplied
component editor are ignored if
you install it. Delphi can only
handle one component editor per

unit TblEdit1;
interface
procedure Register;
implementation
uses
DBTables, DsgnIntf, Dialogs, SysUtils;

type
TTableEditor = class(TComponentEditor)
function GetVerbCount: Integer; override;
function GetVerb(Index: Integer): string; override;
procedure ExecuteVerb(Index: Integer); override;
procedure Edit; override;

end;
function TTableEditor.GetVerbCount: Integer;
begin
Result := 3;
ShowMessage(Format('Someone wants to know how many ' +
'component editors we are adding. Well, the answer ' +
'is %d', [Result]))

end;
function TTableEditor.GetVerb(Index: Integer): string;
begin
{ Someone wants the menu caption for one of
our component editors }

Result := Format('Component editor no. %d', [Index + 1])
end;
procedure TTableEditor.ExecuteVerb(Index: Integer);
begin
ShowMessage('Someone has chosen one of our component ' +
'editors. Here goes...');

ShowMessage(GetVerb(Index))
end;
procedure TTableEditor.Edit;
begin
ShowMessage(Format(
'Someone double-clicked on a %s component called "%s"',
[Component.ClassName, Component.Name]));

{ This would do the default behaviour, maybe manufacturing
or locating an event handler:
inherited Edit

However, this will execute a component editor: }
ExecuteVerb(0)

end;
procedure Register;
begin
RegisterComponentEditor(TTable, TTableEditor)

end;
end.

60 The Delphi Magazine Issue 44

component, so how can we recon-
cile this problem? The answer I’ve
found involves a bit of subterfuge.

Listing 2 (from TblEdit2.Pas)
shows the important parts of a
replacement TTable component
editor. The underlying premise is
to get hold of some reference to the
original component editor class for
TTable and store it. Then, the new
component editor can call upon
the old one whenever it needs to.

Unfortunately, we cannot just
look through some source code,
find the Delphi-supplied compo-
nent editor class and refer to it.
One reason is that, from version 3
of Delphi, Inprise have not sup-
plied the relevant file (Delphi 1 and
2 users can find it as DBREG.PAS in
Delphi’s LIB directory). The more
important reason is that, like
Listing 1, DBREG.PAS defines the
component editor class type,
TDataSetEditor, in the implementa-
tion section of the unit and so we
cannot gain access to it in code.
This forces us into some under-
hand coding, so here goes.

In the Register routine, the code
creates a TTable instance such that

type
TTableEditor = class(TComponentEditor)
private
FEditor: TComponentEditor;

public
constructor Create(AComponent: TComponent; ADesigner:
{$ifdef DelphiLessThan4} TFormDesigner
{$else} IFormDesigner {$endif}); override;

destructor Destroy; override;
function GetVerbCount: Integer; override;
function GetVerb(Index: Integer): string; override;
procedure ExecuteVerb(Index: Integer); override;
procedure Edit; override;

end;
const
NewVerbs = 3;
TableEditorClass: TComponentEditorClass = nil;

constructor TTableEditor.Create(AComponent: TComponent;
ADesigner: {$ifdef DelphiLessThan4} TFormDesigner
{$else} IFormDesigner {$endif});

begin
inherited Create(AComponent, ADesigner);
if TableEditorClass <> nil then
FEditor :=
TableEditorClass.Create(AComponent, ADesigner);

end;
destructor TTableEditor.Destroy;
begin
FEditor.Free;
FEditor := nil;
inherited Destroy

end;
function TTableEditor.GetVerbCount: Integer;
begin
Result := FEditor.GetVerbCount + NewVerbs;
ShowMessage(Format(
'Someone wants to know how many component editors ' +
'we are adding. Well, the answer is %d', [Result]))

end;
function TTableEditor.GetVerb(Index: Integer): string;
begin
{ Someone wants the menu caption for one
of our component editors }

case Index of
0..NewVerbs - 1 :
Result :=
Format('Component editor no. %d', [Index + 1])

else
Result := FEditor.GetVerb(Index - NewVerbs)

end;
end;
procedure TTableEditor.ExecuteVerb(Index: Integer);
begin
ShowMessage('Someone has chosen one of our component ' +
'editors. Here goes...');

case Index of
0..NewVerbs-1 : ShowMessage(GetVerb(Index))

else
FEditor.ExecuteVerb(Index - NewVerbs)

end;
end;
procedure Register;
var
TmpTable: TTable;
TmpTableEditor: TComponentEditor;

begin
{ Make a temporary table }
TmpTable := TTable.Create(nil);
try
{ What is the current component editor }
TmpTableEditor := GetComponentEditor(TmpTable, nil);
try
{ Make a note of its type }
TableEditorClass :=
TComponentEditorClass(TmpTableEditor.ClassType)

finally
TmpTableEditor.Free

end
finally
TmpTable.Free

end;
{ Now add our component editor to the foray }
RegisterComponentEditor(TTable, TTableEditor);

end;
end.

➤ Listing 2
it can call a rather handy routine in
the DsgnIntf unit. GetComponent-
Editor returns an instance of the
original component editor. Rather
than store this object directly,
meaning we have a possibly
unused object floating around for
the whole Delphi session, we
instead store a reference to its
class type in an appropriate
variable. Once the variable is set,
the new component editor can be
registered with the system. Of
course, had we registered our com-
ponent editor first, GetComponent-
Editor would have returned an
instance of our class: not what we
want.

When an instance of our compo-
nent editor is created by Delphi,
the constructor creates an
instance of the original component
editor for use if necessary. The
destructor also ensures that it gets
destroyed again. Now our new
GetVerbCount can tell Delphi that
we want our three verbs plus the
number of verbs that the old com-
ponent editor adds. Similarly,
ExecuteVerb and GetVerb can
extract information or invoke func-
tionality from the old component
editor as required. Figure 4 shows

the modified context menu for a
TTable in Delphi 4.

The only additional thing to
mention here is the minor amount
of conditional compilation used in

➤ Figure 4

April 1999 The Delphi Magazine 61

the component class definition.
Delphi 4 changed the definition of
one of the constructor parameters
from an object reference of type
TFormDesigner to an interface
reference of type IFormDesigner.

Treeviews And Tooltips

QI have a big problem with
treeviews. In a treeview, if

the text of a node is too long, Win-
dows automatically creates a hint
window (a kind of tooltip) that
overlaps the treeview control win-
dow when the mouse is moved
around (like in Windows Explorer).
Under Windows 95, everything
goes fine. Under NT, once in a while
the application terminates in an
abrupt way and disappears from
the task bar! Is there a way of solv-
ing this (for example, preventing
Windows from creating the tooltip
with the node text?)

AOK, so I’ll précis that ques-
tion into ‘How can you turn

automatic tooltips off in a tree-
view?’ I have heard of a number of
issues with the tooltip generation
ability of treeviews in certain
versions of the COMCTL32.DLL
library, so I guess there might be a
common need to do this.

It is worth emphasising that
treeviews support two kinds of
tooltips. Firstly, the standard VCL
tooltip, controlled by the Hint and
ShowHint properties. Whenever the
mouse is paused anywhere over
the control, if ShowHint is True, a
tooltip will appear displaying what-
ever Hint was set to. If Hint is not
set, the parent object’s Hint is
checked.

In addition, the treeview auto-
matically provides a helpful tooltip
whenever your mouse moves over
a node with text that is partially
obscured. This is much the same
idea as that discussed in the article
Tooltips Under Your Control in the
last issue.

Delphi 4 makes the job of dis-
abling these tooltips fairly easy:
there is a Tooltips property that
defaults to True. Under Delphi 3 or
2, you will need to do it manually.
The Delphi 4 Tooltips property
adds or removes the common
control style TVS_NOTOOLTIPS from a
treeview’s window style as appro-
priate. TVS_NOTOOLTIPS is defined in
Delphi 4 as a constant with a value
of $0080, but did not exist in Delphi
2 and 3. Listing 3 shows some code
that can be used to toggle treeview
tooltips in an application (you can
find the code in a simple applica-
tion called TreeView.Dpr on the
disk).

Long And Short
Filename Conversion

QMy query dates back to
Issue 7 when you gave de-

tails of launching applications and
waiting for them to terminate. I
wrote a program using this which
launched Excel Version 7 perfectly
with a parameter of:

C:\MSOFFICE\OFFICE\LIBRARY\
MYFILE.XLA

My user has now installed Excel 8,
and the relevant parameter is now:

C:\PROGRAM FILES\
MICROSOFT OFFICE\OFFICE\
LIBRARY\MYFILE.XLA

This long file path is rejected by
Excel which still seems to need the
old short form:

C:\PROGRA~1\MICROS~2\OFFICE\
LIBRARY\MYFILE.XLA

which works OK.
I thought I would write a ‘simple’

conversion routine to produce the
short format. But this has turned
out to be remarkably complicated.
Note MICROS~2 as the second slice
above. My Program Files directory
contains both Microsoft Office
and Microsoft Reference subdirec-
tories and it is possible that in
addition to PROGRA~1 there might be
PROGRA~2.

Is there an easy way to convert
the new long style path and
filenames into their short
equivalents?

AExtrapolating this question
out a little, we have several

{$ifdef Ver90} { Delphi 2.0x }
{$define DelphiLessThan4}

{$endif}
{$ifdef Ver93} { C++ Builder 1.0x }
{$define DelphiLessThan4}

{$endif}
{$ifdef Ver100} { Delphi 3.0x }
{$define DelphiLessThan4}

{$endif}
{$ifdef Ver110} { C++ Builder 3.0x }
{$define DelphiLessThan4}

{$endif}
procedure TForm1.CheckBox1Click(Sender: TObject);
{$ifdef DelphiLessThan4}
const
TVS_NOTOOLTIPS = $80;

var
Style: Integer;

begin
Style := GetWindowLong(TreeView1.Handle, GWL_STYLE);
//Could use this if you just wanted to toggle states
//Style := Style xor TVS_NOTOOLTIPS;
if CheckBox1.Checked then
Style := Style and not TVS_NOTOOLTIPS

else
Style := Style or TVS_NOTOOLTIPS;

SetWindowLong(TreeView1.Handle, GWL_STYLE, Style);
end;
{$else}
begin
TreeView1.Tooltips := CheckBox1.Checked

end;
{$endif}

{$ifdef DelphiLessThan4}
function ExtractShortPathName(const FileName: string): string;
var
Buffer: array[0..MAX_PATH] of Char;

begin
SetString(Result, Buffer,
GetShortPathName(PChar(FileName), Buffer, SizeOf(Buffer)));

end;
{$endif}
procedure TForm1.FileListChange(Sender: TObject);
begin
if FileList.ItemIndex = -1 then Exit;
lblLong.Caption := FileList.FileName;
lblShort.Caption := ExtractShortPathName(lblLong.Caption);
lblLongAgain.Caption := ExtractLongPathName(lblShort.Caption)

end;

➤ Listing 3

➤ Listing 4

62 The Delphi Magazine Issue 44

questions to answer here. How
does a 32-bit app translate be-
tween long and short file and path
names, and also, how does a 16-bit
app do the same (if it wants to)?

Let’s tackle 32-bit applications
first. The relevant code for this can
be found in the LongToShort.Dpr
project on the disk this month, and
Figure 2 shows what it does. When
you locate a file on the machine in
the file listbox, the long filename is
written on one label. This is then
translated into the short name and

written in a second label. Finally,
the short version is translated
back to a long version and written
on a final label.

To accomplish the task, the pro-
gram uses two translation rou-
tines, ExtractShortPathName and
ExtractLongPathName. The former
routine is a no-brainer in Delphi 4
as it is supplied in the SysUtils
unit. Conditional compilation
ensures that if the program is com-
piled under Delphi 2 or 3, a substi-
tute routine that uses the

GetShortPathName API
is called instead. List-
ing 4 shows this rou-
tine and the code that
updates the labels.

As you can see,
going from long to
short names is quite
straightforward.

Unfortunately, this is not so when
going the other way.

It’s not so bad if you simply want
a file name or a directory/folder
name converted from short to long
format, but a full path to a file
requires dealing with bit by bit. So
the program uses two routines, the
aforementioned ExtractLongPath
Name and a helper routine called
ExtractLongFileName. An individual
file or folder name can be con-
verted by locating it with the
Delphi FindFirst routine. Pass it a
short name and the Name field of its
TSearchRec record gets set to the
long version.

In fact, the TSearchRec record
has another record as one of its
fields. The underlying Win32
TWin32FindData record is stored as
the FindData field. This record has
two fields of its own called
cFileName and cAlternateName.
These character arrays contain
the long and alternate (that is,
short) versions of the name, in
case you need to use them in this
format.

Listing 5 shows ExtractLong-
FileName using this information to
endeavour to translate from short
to long names. Notice that if the file
cannot be found, or if it appears to
have no long name equivalent, the
short name is returned. This is
based upon code I first saw posted
on CIX by John Atkins.

ExtractLongPathName takes a full
path to a file and works from the
file name, all through the directory
names, building up a long equiva-
lent (see Listing 6). This is also
based on some code spotted on
CIX, posted by Nic Landmark.

function ExtractLongPathName(const PathName: String):
String;

var
PathPart: String;
Index: Word;

begin
PathPart := PathName;
{ Get long name of the deepest level of path
(file name or dir) }

Result := ExtractLongFileName(PathPart);
{ Get long version of all directories in path }
Index := Length(PathPart);
repeat
while (PathPart[Index] <> '\') and (Index > 4) do
Dec(Index);

if PathPart[Index] = '\' then begin
PathPart[Index] := #0;
Result :=
ExtractLongFileName(PathPart) + '\' + Result

end
until Index = 4;
{ Finally add the drive letter }
Result := Copy(PathName, 1, 3) + Result;

end;

function ExtractLongFileName(const FileName: string):
string;

var SearchRec: TSearchRec;
begin
//Just in case something goes wrong
Result := FileName;
//Look for directories as well as just normal files
if FindFirst(FileName, faDirectory, SearchRec) = 0
then begin
//If we find it, return the long name
Result := SearchRec.Name;
//If we don't have a long name, return the short name
if Result = '' then
Result :=
String(SearchRec.FindData.cAlternateFileName);

end;
//Tidy up
FindClose(SearchRec);

end;

➤ Figure 2

uses ShellAPI;
function ExtractLongFileName(const FileName: string): string;
var Info: TSHFileInfo;
begin
if SHGetFileInfo(PChar(FileName), 0, Info, SizeOf(Info),
SHGFI_DISPLAYNAME) <> 0 then
Result := String(Info.szDisplayName)

else
Result := FileName;

end;
function ExtractLongPathName(const PathName: String): String;
var LastSlash, PathPtr: PChar;
begin
Result := '';
PathPtr := PChar(PathName);
LastSlash := StrRScan(PathPtr, '\');
while LastSlash <> nil do begin
Result := '\' + ExtractLongFileName(PathPtr) + Result;
if LastSlash <> nil then begin
LastSlash^ := #0;
LastSlash := StrRScan(PathPtr, '\');

end
end;
Result := PathPtr + Result;

end;

➤ Above: Listing 5

➤ Right: Listing 6

➤ Listing 7

64 The Delphi Magazine Issue 44

So now the program is complete.
But, as per usual in Delphi-land,
there are other ways of doing
things. LongToShort2.Dpr does
the same job, but with different
implementations of these two
short to long conversion routines.
ExtractLongFileName uses a shell
routine to do the hard work, and
ExtractLongPathName uses PChar
manipulation to produce shorter
code (based on code posted to the
Usenet by Bryan Wilken). Listing 7
shows these alternative versions.

So that’s Win32 dealt with. Now,
what about 16-bit applications

procedure ExtractOtherNameC(SrcName, DestName: PChar; ShortToLong: ByteBool);
assembler;

asm
lds si, SrcName
les di, DestName
mov ax, $7160
mov cl, ShortToLong
inc cl { 1 - get short name, 2 - get long name }
mov ch, 0 { return full path }
int $21

end;
function ExtractShortPathName(const FileName: string): string;
var LongNameBuf, ShortNameBuf: array[0..255] of Char;
begin
ExtractOtherNameC(StrPCopy(LongNameBuf, FileName), ShortNameBuf, False);
Result := StrPas(ShortNameBuf)

end;
function ExtractLongPathName(const FileName: string): string;
var LongNameBuf, ShortNameBuf: array[0..255] of Char;
begin
ExtractOtherNameC(StrPCopy(ShortNameBuf, FileName), LongNameBuf, True);
Result := StrPas(LongNameBuf)

end;

➤ Listing 8
written in Delphi 1? If they need to
convert short to long filenames

and back again, things are a
little trickier. Applications
running under Windows
95/98 are fine, since there is
a special interrupt that will
do both conversions. But if
running on NT..., well I think
options are rather remote.

There is a Delphi 1 pro-
ject supplied called
LongShrt.Dpr that again
duplicates the previous

➤ Figure 3
projects. The only difference is
that since 16-bit applications deal
in short filenames by default, the
program goes from short to long
and back again (see Figure 3). List-
ing 8 shows how the code looks.
The interrupt is called through
inline assembler, where the CL reg-
ister is set to 1 or 2, depending
which way the translation is
supposed to go.

	Bitmap Puzzle
	TTable Component Editor
	Treeviews And Tooltips
	Long And Short Filename Conversion

